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A tllrcc-dirl~crlsior,al elect.ror[~ag[wtic 1’IC code has
been dcwclopcd  on the 512 node Intel  ‘Jbuc})stone IJclta
MIMI)  parallel computer. ‘l’his code is based on the
General Concurrent I’IC algorithm which uses a do
]I)ain dccolnposition  to divide the computation arr)ong
the processors. ‘J’hc 3D sirnu]ation  domain can tm par-
titioned into 1-, 2-, or 3-dimrmsional  subdornains.  I’ar-
ticlcs  nmst  be exchanged between processors as they
rllovc  among  the subdomains.  q’he Intel I]elta a l l ows
one to usc this code for very-large-scale simulations
(i.e. over 10s particles and 106 grid cells). ‘l%e par-
allel ef[icicncy of this code is lnea~ured,  and the overall
code pcrforrllance  on the l>elta  is compared with that
ori Cray sullercornputers. It is shown that our code
rurls with a high parallel efficiency of > 9590 for large
size I)roblems. ‘1’hc particle push time achieved is 115
nsccs/partic.lc/tirne step for 162 million particles on 512
rlodcs. Comparing with the performance on a Cray C90,
this  rc~)rescrlts  a factor of 58 s~lecdup.  ‘l’he code uses a
finite-diflcrcncc ]cap frog method for field SOIVC  which is
significar]tty  rnorc efllcient  than fast Fourier transforms
on parallel computers.

J. lntrgduction

Corllputcr  particle simulation h= bccomc  a standard
method in space and laboratory plasma jhysics re-
search. A partic]ein-cell (PIC) code simulates plawlla
l,hcnorIlcna  by modeling a plasma  as hundreds of thou-
sands of test particles and following the evolution of the
orbits of individual test particles in the self-consistent
clcc.tromagllctic  field. Each tilne  step in a }’IC c o d e
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corlsists of two nlajor  stages: the particle push and the
field solve. Since the particles can be located anywhere
within the simulation domain but t}lc macroscopic field
quantities are defined only on discrete grid points, the
particle push uses two interpolation (gather/scatter)
steps to link the particle orbits and the field comp~
ncmts.

While the particle simulation method allows one to
study the plawna  phenomena fror[l  the very fundan~en-
tal lCVC1) the scope of the physics that can bc resolved
in a simulation study critically depends on the compu-
tational power. 7’he computational time/cost and conr-
puter  rllerl]ory  size restricts the tinm scale, spatial scale,
and number of particles that can bc used in a simula-
tiorl. ‘J’hc cost of running three dimcnsiona]  electronlag-
nctic  I’IC calculations on existing sequential supcrconl-
prrters  limits the problems which can be addressed.

Recent advances in massively parallel supcrcornput-
ers have provided con]putational  pcmibilities that were
previously not conceivable. The object ivcs of this st ud y
are to develop a three-dimensional clcctromaglmtic  I’IC
code for MIMIJ  parallel computers and to test the full
potcnt,ial  of using parallel computers for very-large-scale
I)arf,iclc  sirrlulations. In section 2, our 31) PIC code is
discussed. ‘l’his code is in]plcrncntcd  on the 512 node
]ntcl  ~’ouchstonc Delta parallel conlputer  at Caltcch  us-
ing the Genera] Concurrent PIC  (GCPIC) algorithnl[l].
Section 3 discusses the code pcrforrllance.  “1’hc  parallel
efliciencics of running the code for fixed problerl]s  and
scaled problems w’ill bc discussed, and the overall pcr-
forrrlance  of the code on the Intel  I)clta will be cor[lpared
with t}]at on Cray supercorrlputers,  Section 4 contains
a sunlrllary  and conclusions.

~. A }’arallel 31) Elcctronlagnctic  PIC  Code

‘1’he  Algorithm
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‘1’he basic procedures of a generic electro~nagnetic
I’IC code arc rLs follows:
(1) l)cfine the initial conditions of the particles and
fields;
(2) Ilistribute the charge and current of the particles to
the nearby grid poin!s  to obtain the charge density p
a~ld c.urrellt density J at each grid point;
(3) Solve the hfaxwel]  equations

T./.E  p-p (1)

f/.I7=Q (2)

(917-z-. cv xi-J”-r% (3)

(4)

to obtain the electromagnetic field at each grid point;
(4) ]ntcrpolatc the electromagnetic field on the particle
position to obtain the force on each particle; and
(5) [Jpdate  the particle velocity and position frolll the
Newton’s second law

(5)

]n our code, the relativistic equation of motion is used
for particle push. ‘1’hc  trajectory of each particle is inte-
grated using the usual time-centering leapfrog sc}lcme:

wllerc the suj~crscripts  n +- 1/2 and n + 1 represents the
tin]c step, and the y is the relativistic gamma.

‘J’he frcld equations are most commonly solved by
trarlsforlll  methods SUC}I as fast F o u r i e r  t r a n s f o r m
(1’1’”’1’). Ilowcver,  transform methods are ‘(global” meth-
ods because the field information from every point in
the simulation domain contritrutes  to each single flcld
har~l]onic.  in general, global methods are not very cfli-
cicrlt fc)r ])arallel computers because they involve a large
ar~iount of interprocezsor  communications which may
eventually bcco]nc the bottleneck. For a code to run
cfficient]y in parallel, a mct}lod that updates t}le field
})urely  from the local data is preferred.

Elorn the Maxwell’s equations, one notes that eq(l)
will always be satisfied  as long as the charge conscrva-”
tion condition

afr-r-=-v.J-al

is satisfied, hence, the elcctrolrlag~letic  field can be up
dated frorl, only the two Cllr] hfaxwcll)s  equations (3)
and (4) if onc can enforce rigorous charge conservation
nun)erically.  A rigorous charge conservation n}ethod has
been developed in the Magic and Quicksilver codes by
Sandia National I,aboratorim[2]  and the ‘JYistan  code by
IIurlcrr)an  et al[3,4]. In this scherllc, the electromagnetic
frcld is updated locally by firlitc-difTcrencc  leapfrogging:

@ 1/2 _ ~p- 1/2 _- - dt[c v xi”] (9)

This schernc also requires the use of a complex stag-
gered grid rncsh syst.crrl  in which ~ is defined at midp-
oints of cell-edges while l; is defined at Illidpoints  of
cell-surfaces. ‘1’his  ensures that the charlge of 11 flux
through a cell surface equals the negative circulation of
E around that surface and the change of E flux through
a cell surface (offset grid) equals the circulation of J]
around that surface rlrinus the current through it. ‘l’his
frnite-difference leapfrogging scheme is used for our field
solve.

lmplerncntation on a MIMI)  Parallel Conlputer-.—

‘J’here are baqical]y two types of parallel comput-
ers: Multiple-Instruction Multiple-I)ata  (MIMI)) and
Single-instruction Multiple-Data (SIMD).  In a hfIMI>
parallel computer, each procmsor  may execute a sep-
arate stream of instructions while in a SIMI)  parallel
computer, each processor executes the same instructions
sir[mttaneously.

Our 31) electronlagnctic  1’](I code is implemented on
a MIMI)  parallel computer, the Intel ‘J’ouchstorre  Dc]ta
computer at Cal tech. ‘J’he Intel Touchstone Delta sys-
tclIl consists of an ensenlble  of nodes which are inde-
pendent processors with its own memory connected as a
twcdimensional mesh. There are 512 numerical nodes.
Each numerical node is i860 chip ba~ed. l’he node op-
erates at 40 MIIz and hag a peak speed of 80 single-
precision Mflops  and 60 double-precision Mflops.  The
available lnenlory  on I)elta is about 12 Mbytes per  node
or an equivalent of 6.1 (;hytcs on all 512 nodes.

‘J’hc code is irllplcrnentcd  using the general concurrent
I’lC (GCI’IC)  algorithnl  developed by I,iew’er and I)e-
cyk[l].  ‘1’hc  GCI’lC  algorithm is designed to nlake the
nlost  cornputationally  intensive portion of a PIG code,
the particle computation, run  efhcicntly  on a MIMI)
paral]cl  cor]lprrter. ‘1’he  algorithni  uses a domain de
corr]position to divide the conlputation among parallel
processors. ~ach  processor is assigned a subdornain  and
all t}lc particles in it. When a particle moves frorll one
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subdon)ain  to another, it nmst  be passed to the appro
~,riatc processors. For the code to run efficiently in par-
allel, the domain decomposition needs to be such that
the subdornains  have roughly the same number of par-
ticles for load balance. in our code, the computation
donlain  can bc partitioned into I-, 2-, or 3-diIncrlsional
subdor]lains  ( ‘(slabs”, “rods”, or ‘(cubes”).

‘J’hc code is written using l;xprcss-Fortran  and corn-
[)ilcd into a single object code. lath processor runs
tllc object with a separate progralrl  counter. Eaclr pr~
ccssor also has its OWJI particle arrays and field arrays.
‘1’llc cor[~prrtations  irl cac}l processor arc linked together
through l]wssagc-passing  and global communications.
‘J’hrcc  major lncssagc-passing  operations arc involved in
tllc cocle: parlicle  trade, guard cell er-change , and guard
CC1l summation. Guard CCIIS  are the neighboring grids
outside a processor’s subdornain  boundary, also stored
by tllc processor, whic}l are needed to insure that the
interpolatior)s  (gather/scatter) can bc performed locally
(rlc~ intcrproccssor  communication).

J’arlicle  tmde  passes the particles bctwccn  processors.
If a ~)article went out of bounds of a subdomain  bound-
ary, it is placed in a buftcr.  When all particles have bccrr
checked, the buffer is passed to the neighboring proccs
sc)rs, and at the sarnc tirnc,  incoming particle buflcrs
arc rcccivcd from the neighboring processors. Guard
cell erchange and guard cell summation arc for colnnlu-
nication  of ~cld inforr]]ation.  When updating the field,
the ~ and 1) field in guard CCIIS  need to bc cxchangcd
bctwccr)  neighboring processors so all processors have
tllc updated cor]ditions. When dcpositirrg  the current,
those particles near a subdomain  boundary will con-
tribute to the current on the grid points on both sides
of t}iis boundary. }Ience, the guard cell currents need
to bc passed to the ncig}lboring processors and added
to the currents at the appropriate interior points of the
rleiglrboring processors.

l’ig. 1 shows the flow chart of our parallel 31) clcc-
trornag[lctic  PIC  code. Note that the rounded blocks
rcprcscnt  the steps in a sequcrrtial  EM PIC  code and
tllc four rectangular blocks are the ncw steps needed in
tllc parallel rncssagc-pasaing  code.

3. }’crformancc  Analysis.—— ——

‘J’hc perforrllance  of our parallel 31) clcctronlagnetic
1’lC code IIM been rncwwred in t}lrec ways: 1) fixed
problcnl  size analysis; 2) scaled problem size analysis;
and 3) comparison ofthc pcrforrrlancc  with that on Cray
supcrcorllputcrs.

An important mcrwure  of the perforrrlance  on a con-
currerrt computer is the parallel efficiency  t which mea-

sures the effects of corn~lmnicatiorl  overhead and load
imbalance[5].  If there were no communications involved
and the procewor  loads were perfectly balanced, the
parallel eflicicncy would be c = 100%. In this paper
wc shall focus only on the effect duc to comnlunication
overhead. ‘J’hc simulation runs used in this section all
have near-perfect load balance because the particle dis-
tributions arc nearly uniforr[l.  (I)ynarnic. load balance
for non-uniform particle distritrutiorls  has been investi-
gatcd  in a ’21) I)IC code by Ferraro et al[6].)

Fixed l’roblcrrl Size Analysis-.

In a fixed problcrrl size analysis, we compare the times
to run tllc sarnc prob]crrl  on an incrc~sirlg  nur[lber of
proccasors. Since the total problcm  size is fixed, the
problcrn  size on each individual processor dccrcrrscs  as
the number of processors incrcaws.

I,ct  us define I’(N)  to be the time elapsed on a par-
allel corn~)utcr  with N nodes. For a problem that can
bc fit into a rllinirmrrn  of JVm>in processors, the parallel
cfflcicncy N > A’n,im  proccsssors  is defined by

~’(~rf)in  )~n,ir,C ( N )  =- - - -  - –
1’(N)N

(lo)

For the fixed problem size analysis, we have consid-
ered two problcrrls. ‘J’he size of the first problcrn  (Fl)
is 2.22 x 105 particles and 323 =. 32768 grid cells (W 7
particle/cell). ‘J’his problcrn  can be fit on a single pr~
ce~~or  on I)clta. ‘1’hc second problcm  (F2)  ha~ 1.4 x 1 07

~,articlcs and 643 = 2.62 x 105 cells (* 54 particle/cell).
F’2 requires a tninirrmr]rl  of 64 processors to run. F1
and F2 were run using processors from NP = N,~,in to
NP = 512. 31) domain partitions are used. ‘1’hc  parallel
cfflciencics for F] and P2 as a function of NP are s}lown
in Fig. 2a and the run times for different portions of
the code are shown in Fig. 2b.

‘J’he results show that the efficiency for Fl drops sig-
nificantly as the processor number  is increzwed  ({(512)  e
24~0). ‘J’his is not surprising because the size of l’1 is
too snlall  to run on the parallel corrlputers.  For in-
stance, when we divide the computation in a 31) par-
tit ion using 8 x 8 x 8 = 512 processors, each processor
will only have a computation domain of 43 grid points
and about only 430 particles. With such a small size
problem on each node, the computation tin]c bccorncs
srr]aller  than the internode communication time. ‘i’hc
low efficiency sirr]ply  reflects the fact that for F1 the
code is donlinated  by internode cornrnunications.  on
the other hand, we find that F2 performs much better
then F1 on multiple nodes because of its much larger
problcrr]  size. (When F2 is divided into 512 processors,
each node has a computation domain of 83 grid points
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slid about 2.77 x 104 particles. ) ‘J’lie parallel efficiency

. for F2 stays at z 95$Z0.  ‘1’his demonstrates that a paral-
lel conlprrter  is best suited only for large size prC)blellLQ,

Scaled I’rotrlcrn  Size Analysis

We now study in detail the parallel cfhcicncy for
scaled problem size. In a scaled problem size analysis,
ww krwq)  tile problen]  size 011 eac}l individual processor
fixed while incrcrwing the total nurnhcr  of processors.
‘J’llc total problclll  size is t}lcn proportional to the nun~-
bcr of })roccssors  used, ‘J’hc parallel cfficicrlcy in a scaled
problcrll size al)alysis is defined as

(11)

We consider two cases for scaled probler[l a~lalysis. In
the first case (S1), each node has 323 cells and about
2.22 x 105 particles (~ 7 particles/cell). When S1 is
loaded to all 512 nodes, the size of the total problem
bccor]les  2563 (1 6.8 million) cells arid 114 million par-
ticles In the second case (S2), each node ha~ 163 cells
and 3.15 x 105 particles (W 77 particles/cell). ‘l’he size
of S2 on all 512 node is then 1283 (2.1 million) cells and
162 n]illion particles. We note that the memory size re
quired to ru~, S1 and S2 on each node are 10.4 hfbytes
and 11.6 Mbytes respectively. Considering the memory
limit of 12 h!bytcs  per node, S2 represents about the
largest problem that one can fit onto the lbuchstonc
l)clta systcr[l. When S2 is loaded to all 512 nodes of
the l)clta, the total memory size is an equivalent of 5.9
G bytes.

‘1’bc parallel cflicicncics for S1 arid S2 as a function of
tllc processor rlunlbcr  arc shown in Fig. 3. The results
show that a high parallel efficiency of ( > 95% haq been
achieved.

‘J’hc  run  times used by different portions of the code
fc,r S1 and S2 arc shown in Fig. 4 rL~ a function of
the processor IIulnbcr. We find that the times the code
spc; lds on particle move, field uj)datc,  and current de-
posit withirl each node (~k OVe, 2~”~rent, ~~idupd.te)  staY

as a constant. ‘1’his is because these three code portions
do not involve internode  communications, and our d~
I]lail]  dcco]I]position hrwr wwigncd an equal anlount  of
calculation to each processor. “J’hc  tirrlcs spent by the
code portions that involve internode conlmunications
(~L~~,,  7j4,, and 7~~,”, ) incrc~qcs somewhat a~ the
~lodc nur[hcr  increases. IIowever, due to the large prot)-
lcnl size on each node, the run tirnc is dominated by
“I)roductive” calculations. For the prob]enm  considered
llcrc, the most coll]putation  intensive portion is particle
Jjusl] within each node. I[cnce,  the increase of commu-
IIication only has a nlirlirrlurll  effect on the overall code

~)crformancc. As Fig, 4 shows, the total run tinle  is
approxl~llate  a corlstarlt  ~q the procc.ssor  nurnt]cr  is irl-
crea~cd,

In our calculations, the guard cell nurriber and the
size of comrrmnicatcd  rncssage is indeperrdent  of the pre
cewor number. Ilowevcr,  the timing results in Fig. 4
shows that the guard cell communication tirnc increases
a~ t}le procc,lsor nurr]hcr  increases. l’his is a~)parcntly
a result of the I)clta hfesh contention since the nunlber
of messages and rrlcssagc size exchanged by each pro-
cessor is constant. WC also note t}lat, in both cases,
the field solve tin)e represents only a very small frac-
tion of the total tirllc (7jie{d/7iOt < 2.4% for S1 and
ljiel~/7~Ot  < 0.5% for S2). AS a test, in some other sirrl-
ulations wc have used N 5 particles/ceil. F,vcn at such
a low particle rlumbcr/grid  ccl] ratio, wc find the field
solve still takes  < 4% of the total ti~ne. ‘1’his den]orl-
stratcs that the finite diflcrencc  field solve is extremely
efflcicnt for parallel com~)utcrs.

O~le of the most important rrlea~urc  of a I)JC code’s
perforlnance  is the particle push time per particle per
time step. ‘J’}IC  particle push tirnc  includes the times
spent on Irlovirlg  particles, depositing currents, and re-
lated interprocessor  communications (i.e. particle trade
and guard cell surmnation):  7~U,~ = 7h,0Ve + liro~c -t
,“,r.nt + ~]d,m,. For S1 and S2, the particle push times7’

on the 512 node I)clta arc as follows:
~~u,k & 119 ilSCCS/I)artiCIC/tinle  Step

for S1(114 rrlillion particles, 2563 grid cells)
7~”,h & 115 rw42cs/particle/tirrle step
for S2(162 rr,illion particles, 1283 grid cells).

I’erforlnance  on Delta vs. Performance on Gay-.—. .—

Finally, we ccmparc  the overall performance of the
code on I)clta with that on Gay su~>erconlputers. 1’WO
Cray  computers were used for this analysis. ‘J’he first
one is the Cray  Y-MI’ at JPI.. The rrlcrnory  limit on the
J]’].  Cray  Y-MI’ is 16 Mwords or 128 Mbytes. The sec-
ond one is one of the larges  Cray  supercornputcr  avail-
able, the Cray C90 at NASA Ames (“J’hc Von Ncurrlan).
‘J’hc rrlcrnory  lirrlit on the NASA Ames Cray C90 is 128
Mwords or 1.024 Gbytcs.  ‘1’he  rnerrlory  liniit  on Intel
IJclta is about 6 tirrlcs larger than that of the Cray C90.

Other than the rrlcssagc-passing  and global communi-
cations, the Cray version of the code is identical to the
parallel version, ‘J’he Cray  version of the code is conr-
piled using the Cray Fortran  compiling systcrn’s  auto
rr)atic vcctorization  and optiniization. IIowcver, no re-
writing waq done to optirrlizc the gather/scatter for the
Cray. All the Cray  runs were carried out on a single
C1’u.

Irl Fig. 5 we plot the total run tirrrcs for the S1 and
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S2 crLwM ~~ a function of the “problcrn size”. ‘1’hc unit
!. of t}lc prot)]clll size is dcfirlcd  m the problerll size o n

1 node of the lklta computer. For S1 (Fig. 5a), t}le
sim unit  is 2.22 x 105 particles and 323 grid cells. For
S2 (Fig. 5b), the size unit is 3.16 x 10s particles and
1 63 grid CCIIS. I)UC to ttle memory limits on the Cray
supcrco[l~puter,  not, all S1 and S2 problems can be run
on the Cray. I,’or instance, the largest S1 problem wc ran
01] the Cray C90 was size e 134.6 (1643 grid cells and
2.98 x 107 particles) and the largcs  S2 problcm  we ran
was size N 91.13 (723 grid cells and 2.9x 107 particles).

‘1’0  corllparc  the pcrformancc,  w e  shall  define t h e
Iklta s}wcdup  as

(12)

l“or sn]all  I)roblerlw,  t h e  Cray  supercomputer  per-
forll~~  nluch bct,ter tharl  the parallel computer. Conl-
paring  to Cray  C90, the spcedup  factors at size = 1 are
S v O.1O for S1 and S’ & 0.12 for S2. }Iowcver, aq the
i)roblcr[l size increa.ws, the tirnc spent on the Cray  is ap-
proxir]]ate]y linear  in the Log scale.  While on t},c I)clta,
due to the high paral]cl  efficiency, the total run times for
S 1 and S2 stay almost an constant as both the problem
size and processor number are irlcrersed.  At size u 64,
wc find the specdup  of the I)elta over the Cray C90 has
bcco~ncs S & 4.9 for S1 and S R 7.42 for S2. Extrapw
Iating  the run times on Cray  to size =-. 512, if one had
a Cray  C90 large enough to run the size = 512 prob
ICI, IS, then the speedup of I)clta over Cray  C90 would
bc about S E 49 for S1 and S ~ 58.7 for S2.

5. Summary and Conclusions-.—

A MIM1) paralhd  31) electromagnetic PIC  code has
been developed on the 512 node lntel Touctlstone  I)clta
systcnl.  ‘1’}lis code is txwed on the General Concurrent
I’IC (CSCI’IC)  algorithm[l]  which uses a donlain  decorn-
position to divide the corrlprrtation  among the proces-
sors. ‘1’brec nlajor  message-pa9sing operations, parlicle
inrdc, guard cell ezchange,  and guard cell sun~tnation,
are used to lirik the cornputatiorm  in different proces-
sors together, With 12 Mbytes me~noty  lilllit  per node
arid a total of about 6 Gbytes  on all 512 nodes, the Intel
l)clta system allows our code to run simulations using
over 108 particles and 106 grid cells. The parallel effi-
ciency of this code is evaluated using both fixed problcrrl
analysis a[ld scaled problcm  analysis. It ie s}lown that
our code rurls with a high parallel efiicicrrcy of c > 95’?ZO
for large size problems. “l’he particle push tirrlc we have
achicvcd is 115 rlsccs/particle/time step for 162 million
~)articlcs on 512 nodes. ‘l’he overall perforr[]ance of the

code on the Iklta is also coniparcd  with tbfit  cm Cray
sllr)ercorllr)~ltcrs. Cor]lparing  with the runs on a Cray
C90, our code has achieved a factor of 58 spcedup  on
the I)elta.

in the code, the electromagnetic field is updated
locally using a rigorous charge-conservation !3rlite-
differcnce leap frog nmtbod.  We find, for parallel con~
puters, a finite difference field solve is significantly more
efficient than fa9t Fourier transfcrrrns. C)ur results shows
that the finite difference field solve generally takes < 1%
of t}le total CPU tinlc  for problcrILs  with about N 77

~)articlcs/cell  ~r~d < 4 %  ever] for  problcnw  wit}l w 5
particlcw/cell.
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Figure  Captions-.

Figure  1: 31) clcctromagnctic  GCI’IC  code flow

l~igur’c  2: Code performance for fixed l)rObhXIL~. a)
l’arallel  cflicicncy.  b) ‘1’imcs for various code portions.

Figure 3: Code pcrforrnancc  for scaled problems: par-
allel cflic.icncy.

Figure 4: Code pcrforrnancc  for scaled problcrrw:
ti]lws for various code portions.

Figure 5: Run time on l)clta vs. run titnc  on Cray.
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